Self driving cars using OpenCV

Abirami Ravishankar

Objective

To understand the use OpenCV in self driving cars to understand the nature of
the obstacle present in front of the vehicle based on the time it takes to move
away from the car and the nature of the path to be taken after encountering.

€3

&
OpenCV \ﬂl_\ a
%

@ python

Progress in the field

Hybrid Navigation
Homogenization and decoupling
Vehicle communication systems
Reprogrammable

Digital traces

Challenges faced?

The human factor

Plan of action \Gz

e Depth analysis of the obstacle(s) present in front.
e Calculating the total time the object spends in front of the camera.
e Detecting the nature of the obstacle in front of it (moving/stationary).

e Movement of the car based on this data received by the camera and works
real time and mostly using data fed into it over a period of time.

What can OpenCV do? : ;
\| © (4

With autonomous driving in ADAS (automated driver assist system) in

Traffic light detection
Traffic signs detection
Pedestrian detection
Lane detection

Other applications of OpenCV

e Object identification
e Face detection

Traffic Light Detection e

Sliding Windows . °
Color Thresholding . e
Spot Light Detection

BLOB Analysis and Morphological Filters The dark connected regions are blobs.

Code

threshold = 100

Dilation and flood fill on the red image gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
kernel = np.ones((9, 9), np.uint8)
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, kernel)
ret, thresh = cv2.threshold(tophat, threshold, 255, cv2.THRESH_BINARY)

dist_transform = cv2.distanceTransform(thresh, cv2.DIST_L2, 5)

ret, markers = cv2.connectedComponents(np.uint8(dist_transform))

L. . . . watershed = cv2.watershed(im, markers)
Left the original image. Center the dilated object.

Right the eroded object.

Traffic Sign Detection

... . Classifier

. Sign
Slgl} — Registra — Feature Extraction — Recognition —> Output
Detection tion

evVsSP@ HEE-E
PODKD mmm-m

Road and Traffic Sign Database ——— Feature Extraction

PEERERTNTE

)
]

Artificial Neural
Network

Pedestrian detection

Trusted | Python 3 @

File Edit View Inset Cell Kemel Widgets Help
B+ % & B 4 ¥ MRin B C W cCode v =2
Initializing the HOG person

detector

hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HoGDescriptor_getDefaultPeopleDetector())

cap = cv2.VideoCapture('vid.mp4')

while cap.isOpened():
Reading the video stream
ret, image = cap.read() I
it ret:
image = imutils.resize(image,
width=min(400, image.shape[1]))

Detecting all the regions

in the Image that has a

pedestrians inside it

(regions,) = hog.detectMultiScale(image,
winStride=(4, 4),
padding=(4, 4),
scale=1.05)

Drawing the regions in the
Image
for (x, y, w, h) in regions:
cv2.rectangle(image, (x, y),
(x +w, y+h),
(e, e, 255), 2)

Showing the output Image
cv2.imshow("Image", image)

Output

Code

6 PM (unsaved changes)

idgets Help Trusted

v | =
winstride=(4, 4),
padding=(4, 4),
scale=1.05)

regions:

tage, (x, y),

X + W, y +h),
(8, 6, 255), 2)

x=935. v=01R) ~ RiKA G154 RISE

Showing the output Image
cv2.imshow("Image", image)
if cv2.waitKey(25) & OxFF == ord('q'):
break
else:
break

cap.release()
cv2.destroyAllwindows ()

In 1 &

A

Logout

| Python 3 @

Lane Detection

Read and Decode
video file into
frames

l

Grayscale
Conversion of
image

Reduce noise by
applying filter

Detecting edges

l

Mask the canny
image

Find coordinates
of road lanes

Fit the coordinates
into the canny
image

l

Edge detection is
done

=

Conclusion & 13

e Pre training it with obstacles would make it more efficient than solely relying
on real time statistics.

e Training it based on the time an obstacle spends in front of the vehicle and
nature of the obstacle

e Thus, using OpenCV and training it with obstacle prior is a more accurate
approach to self driving cars.

Thank you!

Questions?

